Metrical Theory for Α-rosen Fractions
نویسنده
چکیده
Abstract. The Rosen fractions form an infinite family which generalizes the nearestinteger continued fractions. In this paper we introduce a new class of continued fractions related to the Rosen fractions, the α-Rosen fractions. The metrical properties of these α-Rosen fractions are studied. We find planar natural extensions for the associated interval maps, and show that these regions are closely related to similar region for the ‘classical’ Rosen fraction. This allows us to unify and generalize results of diophantine approximation from the literature.
منابع مشابه
Metrical Theory for Farey Continued Fractions
By making fundamental use of the Farey shift map and employing infinite (but σ-finite) measures together with the Chacon-Ornstein ergodic theorem it is possible to find new metrical results for continued fractions. Moreover this offers a unified approach to several existing theorems. The application of ergodic theory to the study of continued fractions began with the Gauss transformation, G: [0...
متن کاملCross Sections for Geodesic Flows and Α-continued Fractions
We adjust Arnoux’s coding, in terms of regular continued fractions, of the geodesic flow on the modular surface to give a cross section on which the return map is a double cover of the natural extension for the α-continued fractions, for each α ∈ (0, 1]. The argument applies in wide generality, as we illustrate with its application to the Rosen continued fractions and their recently introduced ...
متن کاملar X iv : 0 70 5 . 37 56 v 1 [ m at h . N T ] 2 5 M ay 2 00 7 On the Lenstra constant associated to the Rosen continued fractions
Abstract The purpose of this paper is to describe the relation between the Legendre and the Lenstra constants. Indeed we show that they are equal whenever the Legendre constant exists; in particular, this holds for both Rosen continued fractions and α-continued fractions. We also give the explicit value of the entropy of the Rosen map with respect to the absolutely continuous invariant probabil...
متن کاملA Multifractal Analysis for Stern-brocot Intervals, Continued Fractions and Diophantine Growth Rates
In this paper we obtain multifractal generalizations of classical results by Lévy and Khintchin in metrical Diophantine approximations and measure theory of continued fractions. We give a complete multifractal analysis for Stern–Brocot intervals, for continued fractions and for certain Diophantine growth rates. In particular, we give detailed discussions of two multifractal spectra closely rela...
متن کاملTNF-α production is modulated by Aloe vera gel extract and its fractions in Candida albicans infected macrophages
Background: Aloes have been used as medicinal plants for centuries. The immunomodulatory effect of Aloe vera has previouslybeen shown. Meanwhile, TNF-α, as an inflammatory cytokine, plays an essential role in defense against invading pathogen. Objectives: In the present study, the effects of A. vera extract gel and its fractions were investigated on the TNF-α production bymacrophages against Ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008